EXPLORING AGE-RELATED SENSORY CHANGES

Dr Orla Kennedy
o.b.kennedy@reading.ac.uk
From Baby to Grandparent... what should we ... (dietitian, nutritionist, nurse, AHP, sensory scientist, product developer, marketeer, consumer) ... consider ??

- Changes in perception ?
- Changes in exposure / familiarity ?
- Changes in needs (physiological / psychological / social) ?
- Designing foods to meet the needs of an increasingly older population ?
- Designing “healthier foods” to appeal to the sensory preferences different age groups?
- How to modify food choice behaviour of specific age groups?
As Older Person:
- Olfaction & Taste diminished
- Dentition and muscle strength influencing texture acceptability
- Lots of experience or Set experiences?
- Health influencing perception

As Adult:
- Increasing tolerance of the trigeminal…”maturing” but reducing sensitivity?

As Adolescent:
- Is “junk” diet influencing perception??
- High sweet & fatty diets reducing sensitivity?

As Child:
- Teeth !...Exploring texture
- Exposure & Neophobia

As Baby:
- Olfaction -Complete & Familiarity already influencing liking
- Sensitive & dislike of Bitter & Sour
- Sensitive & like Sweet & Savoury
Changes in Perception with Age
How does taste change with age & health?
Taste Detection Thresholds: Why They May Increase with Age

Morphological changes
- decrease in receptor numbers

Stimulus persistence hypothesis
- the signal from the taste cells continues to be sent to the brain even when stimulus falls below threshold

Disinhibition hypothesis
- cognitive inaccuracies make an individual unable to retrieve information from memory and connect with current signals from taste cells

Perceptual noise hypothesis
- Repetitive neural firing from the taste cells makes brain unable to ignore irrelevant signals

Neural noise hypothesis
- the signal to noise ratio in the brain is lowered by decrease in signal intensity and increase in spontaneous firing from the taste receptor cells

Functional changes of gustatory cells
What does the literature say?

- Meta-analysis of 23 studies
- Consensus was that taste detection thresholds increased with age (p<0.001) across all taste modalities
- Identification thresholds higher for older adults in 17 out of 18 studies
- 16 out of 25 studies reported perception of taste intensity at supra-threshold levels to be significantly lower for older adults

Chemosensory loss is connected with Frailty not just Age

Orosensory decline correlates with dependency (poor health, medication, cognitive dysfunction):

- N=559 France (65-99 yr)
- Independent living & Nursing Home
- Measured:
 - Salt taste detection
 - Olfaction: detection, characterisation & discrimination
- Results:
 - Well preserved abilities: 43%
 - Moderate Impairment: 21%
 - Clear trend between impairment & level of dependence

Our Evidence: Taste Detection Thresholds

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>Mean Age (range)</th>
<th>Sweet (sucrose)</th>
<th>Salt (NaCl)</th>
<th>Umami (MSG)</th>
<th>Bitter (quinine)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital patients</td>
<td>(50) (42) (51) (28)</td>
<td>84 (65-98)</td>
<td>16 mM (0.5%)</td>
<td>19.4 mM (0.12%)</td>
<td>3.7 mM (0.06%)</td>
<td>0.03 mM (0.002%)</td>
</tr>
<tr>
<td>Healthy older volunteers</td>
<td>38 (35)</td>
<td>71 (62 – 87)</td>
<td>5.9 mM (0.03%)</td>
<td>1.8 mM (0.03%)</td>
<td>0.006 mM (0.0005%)</td>
<td></td>
</tr>
<tr>
<td>Healthy younger volunteers</td>
<td>35</td>
<td>(25-35)</td>
<td>2.5 mM (0.01%)</td>
<td>0.5 mM (0.01%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Significant increase in taste thresholds between YV & OV and between OV & OP (p<0.001 to p<0.05)
Taste Thresholds: Age & Health

Salt Taste Detection Thresholds

- Frequency (%)
- Salt (NaCl) Detection Threshold (mM)
- 0.08, 0.2, 0.7, 2.1, 6.3, 18.9, ≥56.8
- Older Volunteers (%) and Older Patients (%)

Umami (glutamate) Detection Thresholds

- Frequency (%)
- Umami (MSG) detection threshold (mM)
- 0.08, 0.2, 0.7, 2.1, 6.3, 18.9, ≥56.8
- Older Volunteers (%) and Older Patients (%)

Bitter (quinine) Detection Thresholds

- Frequency (%)
- Bitter (quinine) detection threshold (mM)
- 0.0008, 0.002, 0.005, 0.013, 0.03, 0.08, ≥0.2
- Older Volunteers (%) and Older Patients (%)
WHAT ABOUT AROMA: Ortho & Retronasal?

What are the impacts of ageing on odour perception?

- Diminished olfaction with age more common than taste decline
- Effects > 50% of adults 65–80 yrs; ca. 75% of adults > 80

Olfactory Detection Thresholds with SNIFFIN’ Sticks

- SNIFFIN’ Sticks of butanol; 3 AFC

Younger group (20 – 40 yrs)
Average = 0.03 mg/L

Older group range (65+ yrs)
Average = 0.35 mg/L

14 x higher
Supra-threshold Aroma Perception

• Caramel flavours in sweetened milk at supra-threshold levels

• Both ortho-nasal (smell) and retro-nasal (flavour in mouth) perception were assessed to determine...

JND: How much does flavour need to be increased before a younger and older consumers can detect any change?
Lots of Younger people noticed small increases.

Lots of Older people need more to notice a difference.
WHAT ABOUT TEXTURE?

Generally accepted increase in preference for foods that are easier to breakdown & swallow with age
Sensory Perception with Ageing: Key Findings

- Taste perception declines with ageing, with sweetness most preserved.
- Odour and flavour thresholds are generally affected by ageing, although the extent is stimulus specific.
- Thickness and mouth coating perception not or less influenced by ageing.
- Older people can detect milk-based mouth drying to a greater extent than younger people.
DEVELOPING FOODS FOR OLDER PEOPLE: Taste Enhancement of Food for Older Hospital Patients using natural ingredients
Development of Fortified Foods

The effect of macro- and micro-nutrient fortification of biscuits on their sensory properties and on hedonic liking of older people

Roussa Tsikritzi, Paula J Moynihan, Margot A Gosney, Victoria J Allen and Lisa Methven**

The Effect of Nutrient Fortification of Sauces on Product Stability, Sensory Properties, and Subsequent Liking by Older Adults

Older Adults & Sensory Challenges

• Taste & Flavour Enhancement
 • Do it for more dependent older adults
 • Use a “real food” approach

• Nutrient Fortification (Protein)
 • Need to overcome sensory negatives
 • Need to ensure familiarity & congruency

• Need Better Understanding of Appetite control
• More focus on Texture for Older adults
• Need Better understanding of sensory/ nutrient feedback mechanisms
• Understand & Modify older adults emotional food experiences
Thanks

- Our Volunteers
- Dr Maria Dermiki
- Dr Lisa Methven
- Prof Margot Gosney

- Project & PhD Students
- Royal Berkshire Hospital NHS
- MMR Sensory panel
READING’S APPROACH:

• Oral Nutritional Supplements: making these more palatable so that they are consumed more
• Tastier Food: enhancing the taste of food by maximising naturally occurring tastants
• Energy Dense Foods: developing energy dense foods for use in hospitals & care homes
• Improvements to Thickened drinks: to help those with swallowing difficulties
• Micronutrient deficiencies - investigating if correcting these can improve taste perception
• 24/7 Food: evaluating if 24/7 food provision is beneficial